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Chapter 11 Control Systems Design by Root Locus 

After completing this chapter, the students will be able to: 

• Study adding zeros and/or poles on original root locus, 

• Use root locus approach to design Lead and Lag compensators. 

 

1. Introduction 

Control systems are designed to perform specific tasks or requirements that generally 

called performance specifications. These specifications may be given in terms of 

transient response (such as the maximum overshoot and settling time in step response) 

and/or of steady-state requirements (such as steady-state error). The specifications of a 

control system must be given before the design process begins. 

As the gain (K) is varied, both the transient and steady-state responses are also varied. 

Setting K at a particular value produces the transient response obtained by the poles at 

that point on the root locus. Thus, by changing K, we are limited to those responses 

that exist along the root locus. 

For example, if certain transient response (defined by % overshoot, and settling time) 

is desired, and this transient response is represented by point B shown in Fig. 1. At the 
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specified % overshoot, we only can obtain the settling time represented by point A with 

the suitable gain adjustment. Thus, our goal is to speed up the response at A to that at 

point B. This cannot be accomplished by a simple gain adjustment, since point B does 

not lie on the root locus. This can be achieved by adding poles and zeros, so that the 

compensated system has a root locus that goes through the desired point B. 

 

Fig. 1, Concept of design using root locus 

The design by the root-locus method is based on reshaping the root locus of the system 

by adding poles and zeros to the system's open-loop transfer function and forcing the 

root locus to pass through desired closed-loop poles in the s plane. Adding pole or zero 

is done by a controller or compensator. The additional poles and zeros can be generated 

with a passive or an active network. Therefore, the compensator is a device inserted 

into the system for the purpose of satisfying the specifications. The compensator 

compensates for deficit performance of the original system. Commonly used 

compensators or controllers are: 

• Lead compensator (PD controller) 

• Lag compensator (PI controller) 

• Lag-Lead compensator (PID controller) 

2. Realization of Compensators 

As we know, T.F. of an inverting operational amplifier whose configuration is given 

in Fig. 2. Is as follows: 

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
= −

𝑍2(𝑠)

𝑍1(𝑠)
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Fig. 2, Operational amplifier configured for compensator realization 

By the proper choice of Z1(s) and Z2(s), this circuit can be used as different kinds of 

controllers. Table below summarizes the realization of PI, PD, and PID controllers as 

well as lag, lead, and lag-lead compensators using operational amplifiers. 

Function Input impedance Z1 Output impedance Z1 T.F. 

Gain 
 

I-Controller 
 

D-Controller 
 

PI-Controller 
 

PD-Controller 

 

PID-Controller 

 

Lag 

Compensator 

 

Lead 

Compensator 
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The T.F. of the compensator is Gc(s) and may be connected in series as shown in Fig. 

2-a) and is called series compensator. Also, it can be connected in feedback as shown 

in Fig. 2-b) and is called feedback compensator. 

  

Fig. 2   a) series compensator                     b) feedback compensator 

3. Root-Locus Approach to Control System Design. 

The root-locus method is a graphical method for determining the locations of all closed-

loop poles based on the locations of the open-loop poles and zeros as the gain K is 

varied from zero to infinity. As an example, consider the system represented by 

𝐺𝐻(𝑆) =  
𝐾

(𝑆 + 1)(𝑆 + 2)
 

As shown from the system root locus shown in Fig. 3, as the gain increases from K1 to 

K2 to K3 the damping ratio decreases affecting the transient performance but the 

steady-state error is improved. 

 

Fig. 2, root locus of 2nd order system 

It is clear, when the system gain is adjusted to meet the transient response specification, 

steady-state error performance deteriorated, since both the transient response and the 

static error coefficient are related to the gain. The higher the gain, the smaller the 
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steady-state error, but the larger the percent overshoot. On the other hand, reducing 

gain to reduce overshoot increased the steady-state error. If we use compensators, we 

can meet transient and steady-state error specifications simultaneously. 

 

2.1 Effect of Adding poles 

The addition of a pole to the open-loop transfer function has the effect of pulling the 

root locus to the right, tending to lower the system's relative stability and to slow down 

the settling of the response. (Remember that the addition of integral part adds a pole at 

the origin, thus making the system less stable. On the other hand, it increases the system 

type and hence improve the steady state error.) 

Figure 4 shows examples of root locus illustrating the effects of adding a pole or 

poles to a single-pole system and the addition of two poles to a single-pole system. 

 

      a) Original system                       b) adding one pole              c) adding two poles 

Fig. 4, Effect of adding poles to control system 

As the added pole becomes near to the origin, it has a great effect on reducing the 

system stability. Such kind of effect is reduced by moving the added pole to the left far 

from the origin. 

 

2.2 Effects of Adding Zeros 

The addition of a zero to the open-loop transfer function has the effect of pulling the 

root locus to the left, tending to make the system more stable and to speed up the 

settling of the response. Physically, the addition of a zero in the forward path means 



Electrical Engineering Department 

Dr. Ahmed Mustafa Hussein 
 

Benha University 

Faculty of Engineering at Shubra 
 

 

6 Chapter Eleven: Design by Root Locus                                Dr. Ahmed Mustafa Hussein 
 

the addition of derivative control to the system. The effect of such control is to enhance 

the transient response. Figure 5-a) shows the root locus for a system that is stable for 

small gain but unstable for large gain. Figures 5-b), c), and d) show root-locus plots for 

the system when a zero is added to the open-loop transfer function. Notice that when a 

zero is added to the system becomes stable for all values of gain. 

 

                        a)                                  b)                            c)                           d) 

Fig. 5, Effect of adding zero 

As the added zero becomes near to the origin, it has a great effect on enhancing the 

system transient response. Such kind of effect is reduced by moving the added zero to 

the left far from the origin. 

3. Phase-Lead Compensator 

The physical realization of the phase-lead compensator is shown in Fig. 6. 

 

Fig. 6, Circuit realization of phase-lead compensator 

Therefore, the lead compensator T.F. is given by: 

𝐺𝑐(𝑆) =
𝐶1

𝐶2

𝑆 +
1

𝑅1𝐶1

𝑆 +
1

𝑅2𝐶2

=
𝑆 + 𝑍𝑐

𝑆 + 𝑃𝑐
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Where R1C1> R2C2 also, Zc and Pc are the zero and pole of the compensator which 

represented in the S-plane as shown in Fig. 7. 

 

Fig. 7, Pole-zero map of lead compensator 

It is clear from Fig. 7 that the |𝑍𝑐| < |𝑃𝑐|. Therefore, the lead compensator named from 

its leading zero. 

The T.F. of the lead compensator can be represented as: 

𝐺𝑐(𝑆) =  𝐾𝑐

(𝑆 +
1
𝑇

)

(𝑆 +
1

𝛼𝑇
)
 

Where α and T are constants. Also, α is +ve value less than unity. This means: 

𝑇 = 𝑅1𝐶1    𝑎𝑛𝑑 𝛼𝑇 = 𝑅2𝐶2 

The procedure for designing a lead compensator for any control system is: 

1. From the desired performance specifications, determine the desired location for the 

dominant closed-loop poles. 

2. By drawing the root-locus of the uncompensated (original) system G(S), be sure that 

the gain adjustment alone can yield the desired closed-loop poles. If not, calculate 

the angle deficiency θc. This angle must be contributed by the lead compensator to 

reshape the new root locus is to pass through the desired locations obtained from 

step #1. 

3. determine the value of α and T from the deficiency angle (θc). 

To explain the above steps, consider the control system G(s) with two poles (P1 & P2) 

and one zero (Z1) as given in Fig. 8. 
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Fig. 8, Calculation of the lead compensator angle 

Since the point of the desired pole location does not lie on the root locus of G(s). From 

the angle condition, we find that: 

𝜃5 − (𝜃3 + 𝜃4) < 180 

Therefore, we need a phase lead compensator to add a positive angle θc which is: 

𝜃𝑐 = 𝜃2 − 𝜃1 

Therefore, the angle condition of the new root locus will be: 

𝜃5 − (𝜃3 + 𝜃4) +  𝜃𝑐 = 180 

Example 1 

Design a lead compensator for the control system given in Fig. 9 so that the settling 

time (based on ±2%) is reduced to half value while maintaining 30% overshoot. 

Compare the time-domain characteristics of the system before and after the lead 

compensator. 

 
Fig. 9, Design example of lead compensator 

First, draw root locus of the uncompensated system using the following Matlab code: 

>> num=1; 

>> den=[1 10 24 0]; 

>> sys=tf(num,den); 

>> k=0:0.01:200; 

>>rlocus(sys,k) 

The obtained root locus is shown in Fig. 10. 
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Fig. 10, Root locus of the uncompensated system 

At the required maximum overshoot (30%), we find that ζ = 0.358 and ωn = 2.81 rad/s. 

The settling time (based on ±2%) is 4/(0.358×2.81) = 3.976 sec. 

Now, it is required to reduce the settling time to half, i.e. Ts=1.988 sec at the same ζ, 

so we can calculate the new value of ωn = 5.62 rad/s. The dominant pole is shifted from 

point A to point B as shown in Fig. 11. 

 

Fig. 11, Determination of the design point 

The angle condition at point B is: 

𝜃 = 0 − {180 − 𝑡𝑎𝑛−1
5.252

2.014
+ 𝑡𝑎𝑛−1

5.252

4 − 2.014
+ 𝑡𝑎𝑛−1

5.252

6 − 2.014
} = −233.07 

Therefore, the compensator angle (θc) = – 180 – (–233.07) = 53.07˚ 

Assume a compensator zero at –5 on the real axis as a possible solution (Fig. 12). 
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Fig. 12, Determination of pole and zero of lead compensator 

𝜃𝑧𝑐 = 𝑡𝑎𝑛−1
5.252

5 − 2.014
= 60.38 

𝜃𝑝𝑐 = 𝜃𝑧𝑐 − 𝜃𝑐 = 60.38 − 53.07 = 7.31 

tan 𝜃𝑝𝑐 = 0.1283 =
5.252

𝑃𝑐 − 2.014
 → 𝑃𝑐 = 42.96 

Therefore, the location of the lead compensator pole (Pc) = 42.96 

A comparison between the specifications of the uncompensated system with that of 

lead compensation is shown in table below. 

 
Example 2: 

Consider the unity feedback control system: 

𝐺(𝑆) =  
10

𝑆(𝑆 + 1)
 

It is desired to make the system damping ratio 0.5 with undamped natural frequency 

3.0 rad/s. Design the suitable lead compensator and draw the root locus of the 

compensated system. 
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1) Draw the root locus of the original system as shown in Fig. 13. 

 

Fig. 13, Root locus of the original system indicating the design point 

At K=10, the closed loop poles are located at −0.5±J3.1225. 

At  = 0.5 & ωn=3 it is found that the closed loop poles are located at −1.5 ± J2.5981, 

 

2. Compute the angle at the design point shown in Fig. 13. 

𝜃 = 0 − {180 − 𝑡𝑎𝑛−1
2.5981

1.5
+ 180 − 𝑡𝑎𝑛−1

2.5981

1.5 − 1
} = −220.894 

But for the root locus the angle must be ±180, therefore, if we need to force the root 

locus to go through the desired closed-loop pole, the lead compensator must contribute 

𝜃𝑐 = −180 − (−220.894) = 40.894 

at the design point. 

3- Using the bisector method, explained in Fig. 14, determines the location of the 

compensator pole and zero. 
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𝐺𝑐(𝑆) =  𝐾𝑐

(𝑆 +
1
𝑇

)

(𝑆 +
1

𝛼𝑇
)

,    0 < 𝛼 < 1 

At the design point P connect OP and draw the horizontal line AP. Then measure the 

angle OPA. Draw the bisector PB so that it divides the angle OPA equally. From PB 

measure half the lead angle θc before and after the bisector to get the line PC and PD, 

respectively. 

 
Fig. 14, Bisector method to determine the lead pole and zero 

So, we obtain that 

Zero at S=−1.9432 

Pole at S=−4.6458 

And α = 1.9432 ÷ 4.6458 = 0.418 

Now the compensated system become 

𝐺𝑐(𝑠)𝐺(𝑠) =
𝐾𝑐(𝑆 + 1.9432)

(𝑆 + 4.6458)
×

10

𝑆(𝑆 + 1)
=  

10𝐾𝑐(𝑆 + 1.9432)

𝑆(𝑆 + 1)(𝑆 + 4.6458)
 

The value of Kc is determined from the magnitude condition: 

 

The compensated system becomes 

𝐺𝑐(𝑠)𝐺(𝑠) =  
12.287(𝑆 + 1.9432)

𝑆(𝑆 + 1)(𝑆 + 4.6458)
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The root locus of the compensated system is shown in Fig. 15. 

 

Fig. 15, Root locus of the compensated system 

4. Lag Compensator 

The lag compensator T.F. is given by 

𝐺𝑐(𝑆) =  𝐾𝑐

(𝑆 +
1
𝑇

)

(𝑆 +
1

𝛽𝑇
)
 

Where α and T are constants. Also β is greater than unity. 

We select the lag compensator when the system exhibits satisfactory transient-response 

characteristics but unsatisfactory steady-state characteristics. Compensation in this 

case essentially consists of increasing the open-loop gain without appreciably changing 

the transient-response characteristics. This means that the root locus in the 

neighborhood of the dominant closed-loop poles should not be changed appreciably, 

but the open-loop gain should be increased as much as needed. 

This can be accomplished if a lag compensator is put in cascade with the given feed 

forward transfer function. To avoid an appreciable change in the root locus, the angle 

contribution of the lag network should be limited to a small amount, say 5̊. To assure 

this, we place the pole and zero of the lag network relatively close together and near 

the origin of the s plane. Then the closed-loop poles of the compensated system will be 

shifted only slightly from their original locations. Hence, the transient-response 

characteristics will be changed only slightly. 
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Example 2 

Consider the unity feedback control system: 

𝐺(𝑆) =  
𝐾

𝑆(𝑆 + 1)(𝑆 + 2)
 

At a damping ratio of 0.491, it is required to make the velocity error coefficient = 5, 

Design the suitable lag compensator & draw the root locus of the compensated system. 

From the root locus of the uncompensated system, the closed loop poles at  = 0.491 

are located at S = -0.3307 ± J 0.5864 as shown in Fig. 8. 

From the magnitude condition, K = 1.06 

The static velocity error coefficient Kv = 1.06 / 2 = 0.53 

The required velocity error coefficient Kv is 5, this mean, 

𝐾𝑣 = 5 = lim 𝑆
1.06 (𝑆 +

1
𝑇

)

𝑆(𝑆 + 1)(𝑆 + 2) (𝑆 +
1

𝛽𝑇
)

=  
1.06 (

1
𝑇

)

2(
1

𝛽𝑇
)

= 0.53 𝛽 

β = 9.434 

 
Fig. 8, root locus of uncompensated system 



Electrical Engineering Department 

Dr. Ahmed Mustafa Hussein 
 

Benha University 

Faculty of Engineering at Shubra 
 

 

15 Chapter Eleven: Design by Root Locus                                Dr. Ahmed Mustafa Hussein 
 

Let T = 2β = 2 × 9.434 = 18.868 

Therefore, the lag zero is located at 1/T = 0.053 

And the lag pole is located at 1/βT = 0.0056 

The compensated system is 

𝐺(𝑆) =  
1.06 𝐾𝑐(𝑆 + 0.053)

𝑆(𝑆 + 1)(𝑆 + 2)(𝑆 + 0.0056)
 

The root locus of the compensated system is shown in Fig. 9. 

At the same value of the damping ratio of 0.491, the gain is calculated as 

1.06 Kc = 1.0235 

Kc = 0.966 
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Sheet (9) Design by Root Locus 

Problem (1) 

Determine the values of K, T1 and T2 of the system shown in Fig. 1 so that the dominant 

closed-loop poles have a damping ratio  = 0.5 and the undamped natural frequency = 

3 rad/sec. 

 
Fig. 1, Control system for problem 1 

Problem (2) 

Consider the control system shown in Fig. 2, design a lead compensator such that the 

dominant closed-loop poles are located at S = -2±J23 

 
Fig. 2, Control system for problem 2 

Problem (3) 

Consider the control system shown in Fig. 3, find the compensator parameters so that 

the dominant closed-loop poles are located at -1±J1 

 
Fig. 3, Control system for problem 3 

Problem (4) 

For the control system shown in Fig. 4, design a compensator such that the static 

velocity error coefficient Kv is 20 sec-1 without appreciably changing the original 

location (S = -2 ± J 23) of a pair of the complex conjugate closed-loop poles. 
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Fig. 4, Control system for problem 4 

Problem (5) 

Consider the control system shown in Fig. 5. The plant is critically stable at the defined 

value of gain. Design a suitable compensator such that the unit-step response will 

exhibit maximum overshoot of less than 40% and a settling time of 5 sec or less. 

 
Fig. 5, Control system for problem 5 

Problem (6) 

Consider the control system shown in Fig. 6. Determine the value of K and T of the 

controller Gc(S) such that the closed-loop poles are located at S = -2 ± J2 

 
Fig. 6, Control system for problem 6 
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